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Structured mixing model for stirred bioreactors:
An extension to the stochastic approach
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Abstract

The potentiality of a stochastic approach is examined in the case of a mixing model for stirred vessels. This model is interesting due to the
probabilistic and discrete properties that can be used further to facilitate the implementation of a hydrodynamic model into complex reacting
systems, such as those encountered in bioprocesses. Stochastic model performances are compared to well known deterministic compartment
mixing models (CM). It appears that parameters coming from CM can be used in the stochastic approach and that they give equivalent results.
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methodology is elaborated that simplifies the determination procedure of the adjustable parameters of the stochastic mode
mportant parameter to determine is the time step of a simulation performed by the aim of the stochastic model. Indeed, the time
xplicitly given by the model and a correlation is necessary to translate simulation intervals into real time increments. After an a
nalysis of several mixing systems (single or multi-agitated), it appears that a simple correlation involving circulation time could b
erform this translation. The correlation contains an adjustable parameter, which has been quantified for the operating conditions

he study. The circulation of micro-organisms was also simulated simply by using the transition matrix coming from the stochas
hich shows the potentiality of this kind of model in the field of complex reacting systems, such as those encountered in bioproce
2005 Elsevier B.V. All rights reserved.
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. Introduction

The elaboration of a probabilistic mixing model from the
ell known structure of a compartment model (CM) has been

nvestigated in this study. CM has been widely described in
he literature and allows the representation of mixing phe-
omena with a relatively good resolution (depending on the
odel structure). Nevertheless, only a few number of com-
artment models have been applied to the description of
ixing problems in bioprocesses[1–3].
The idea is to extend this kind of model to a stochastic

pproach in which the passage of particles from one flow
egion to another is governed by probabilities. Interest in
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this kind of model comes from its probabilistic and disc
properties, which facilitate implementation with comp
reacting systems, such as fermentation processes. In
tion, the stochastic model is very simple to compute and
not require large computation space or time. This low c
putational requirement is an additional reason allowing
inclusion of this model within more complex ones, such
microbial kinetic models.

In order to understand the working principles of th
models, a short literature review is necessary. As stated
viously, a large number of compartment mixing models
available in the literature. The first structures were v
simple and comprised a single compartment per agit
stage, a compartment corresponding to a volume ele
of the reactor considered to be perfectly mixed[4–10]. The
structures then evolved and were applied to stirred bio
tors. This led to very complex model structures, such a
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Nomenclature

c correlating factor for the determination of the
transition time interval

CM compartment model
d impeller diameter (m)
D stirred vessel diameter (m)
k number of transitions that are necessary to

reach homogeneity
n number of transitions before all states are vis-

ited by tracer particles
nloop number of circulation loops in a two-

dimensional CM
N stirrer speed (s−1)
Nqc circulation or flow number (dimensionless)
NOZ network-of-zones
qc circulation flow rate per loop in the CM (m3/s)
qe turbulent flow rate (m3/s)
qt tangential flow rate (m3/s)
qexit evacuation flow rate used in RTD experiments

(m3/s)
Qc circulation flow rate (m3/s)
RTD residence time distribution
S state vector
S0 initial state vector
Si state vector afterith transition
tc circulation time (s)
tm mixing time (s)
T transition matrix

network-of-zones (NOZ), which comprises a large number
of interconnected compartments[11,12]. These NOZ mod-
els have a higher resolution but require more computation
space because of the large number of differential equations
involved.

In terms of similarity, the compartment network of a classi-
cal CM can be used in a stochastic context. Indeed, this model
consists of several states that can be assimilated into the com-
partments of the CM. The structures are therefore very similar
and differences between the two approaches come from the
mathematical formulation of the models. Stochastic math-
ematical expression does not involve ordinary differential
equations, but a transition probability matrix that orientates
the evolution of the system. This system comprises several
states that correspond in our application to the concentrations
in several delimited zones in the stirred vessel. The CM prin-
ciple, having been greatly improved upon, is useful to take
as a basis from which to elaborate stochastic models that are
not widely applied in the area of fluid mixing, except in the
case of some theoretical considerations[13–15]. Of interest
is the fact that stochastic models have properties that can be
used to study special mixing phenomena, which are impor-
tant, notably in bioprocesses.

The first property is the stochastic aspect of the model
that can be used to make particle following studies[14]. This
aspect is very important in bioprocesses because it enables
the easy description of circulation paths taken by micro-
organisms inside a stirred bioreactor, and allows the determi-
nation of, for example, the frequency at which microbes are
exposed to high nutrient concentrations or high shear stress
[2,16]. Circulation simulation will be investigated in the last
section of this paper.

The second property is the discrete aspect of the model
that can be interesting when coupling hydrodynamics with
complex reactions, such as microbial kinetics[17]. This prop-
erty will be investigated in further studies. There are many
other properties that can be usefully exploited. One example
is the absorbing property, which will be investigated in this
study.

2. Material and methods

2.1. Experimental stirred vessel

Two impellers were used: rushton disk turbines (RDT6)
and lightning hydrofoils A315 (pumping downward), both
having a diameter of 0.1 m. Some combinations were
particularly investigated: RDT6–RDT6, RDT6–A315 (the
fi the
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rst cited impeller was placed at the lower part of
essel and the second one at the upper part; imp
learance from the bottom of the vessel: 0.1 m; in
mpeller clearance: 0.2 m). Photographs of these impe
re shown inFig. 2. All experiments were performed
Perspex stirred vessel (D = 0.22 m) equipped with fou

affles.

.2. Mixing time experiments

Three kinds of mixing experiments were employed in
tudy, each kind permitting the investigation of a spe
spect of mixing behaviour.

The first kind of experiment consisted of measuring
ixing time in a vertical plane of the stirred vessel.
chieve this, a series of thermocouples attached onto a
f the vessel were used. The small dimension of these p
0.45 mm diameter) allows the control of only a restric
olume element in the vessel. It can thus be assumed
nly a vertical plane in the vessel was involved in
xperiments facilitating the implementation of the resul
CM.
The second kind of experiment was also a mixing t

easurement, but here we used conductivity probes. In
ase, due to the larger dimensions of the probes (1 cm d
er), the volume elements are bigger and must be consi
n a three-dimensional context. Experiments conducte
his way were used to implement three-dimensional mo
he positions of the probes for these two kinds of experim
re presented inFig. 1.



F. Delvigne et al. / Chemical Engineering Journal 113 (2005) 1–12 3

Fig. 1. Locations of thermosensors (left) and conductivity probes (right) in
the stirred vessel.

The third kind of experiment was a residence time distribu-
tion (RTD) measurement. The apparatus is the same as for the
previous one, but here fluid is continuously fed and extracted
from the vessel at a flow rate of 50 ml/s. Conductivity probes
allow the on-line measurement of the decreasing concentra-
tion of the injected tracer. These experiments allowed for
an improvement of the stochastic model, by analysing the
absorbing state property.

For the first and second kinds of experiments, the mix-
ing time (corresponding to a degree of mixing of 85%) was
calculated from tracer curves using the method presented by
Mayr et al.[18]. In this method, an ideal response function
corresponding to the tracer curve of a pulse added in a per-
fectly mixed reactor must be first determined. The standard
deviations of each experimental tracer curve (5 or 8 for the
thermal method and 1 or 2 for the conductivity method) from
this ideal response function are then calculated. The standard
deviations are summed and divided by the number of sen-
sors to give an inhomogeneity function varying from 0 (total
homogeneity) to 1 (total inhomogeneity). In this study, the
mixing time corresponded to the time at which the value of the
inhomogeneity function dropped to 0.15, or in other words
a degree of mixing of 85%. The inhomogeneity degree was
chosen at a high enough level to make the fluctuation signal
of the probes negligible.

A large amount of data were collected in this way and were
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2.3. Mathematical models: CM and stochastic
approaches

The aim of this paper is to translate compartment mixing
model knowledge into a stochastic context. Advantages of
such an approach have been briefly discussed in Section1
and will be reviewed at the end of this study.

It is of practical importance to begin with a brief descrip-
tion of the two models presented here and to discuss their
differences. In the case of the compartment mixing (CM)
approach, the flows between the interconnected compart-
ments are responsible for homogenisation. In the case of a
stochastic model, it is a series of probabilistic transitions
between states that are responsible for the repartition of the
tracer in the whole vessel. The CM approach consists of a
set of ordinary differential equations (one for each compart-
ment), which are resolved in a continuous manner with an
appropriate numerical method (in our case, a Runge–Kutta
routine was used). More details about CM construction can
be found in[6,11]. The stochastic model consists of an initial
state vectorS0, which is multiplied with a transition matrix
T to give a new state,S1. This procedure can be represented
by the following equation:

For the first transition :S1 = T · S0 (1)
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sed to elaborate a mixing database containing the ex
ental conditions, the mixing time results and the param
stimation for each model. In order to limit the experim

al field and to concentrate our attention on stochastic m
evelopment, only the results performed in water in n
erated conditions will be considered in this paper. Ind
eration and viscosity led to a modification of the parame
f the model (e.g., circulation flow drop with increasing a
tion and/or viscosity). This requires extensive discus
hich cannot be included in the space allowed.
he next step involves the multiplication of the new s
ector S1 with the same transition matrixT until a steady
tate is reached:

or the second transition :S2 = T · S1 or S2 = T 2 · S0

(2)

or theith transition :Si = T · Si−1 or Si = T i · S0 (3)

n our case, the state vector contained the tracer conc
ions for all states, a state corresponding to a region o
gitated vessel (or a compartment in the CM context).

The numerical implementation of a stochastic simula
s thus very simple because it involves only matrix mu
lication. An important fact is that the stochastic mode
discrete-space and discrete-time model, whereas CM

ontinuous-time and discrete-space model. It thus ap
hat the two models work on a very different basis.
issimilarities between the CM and the stochastic mi
odels need to be analysed in order to facilitate the tra

ion of knowledge between the two approaches.
In order to stay within the same referential for all the m

ls constructed in this paper, the number of compartmen
gitation stage was always 8. This is the minimum num
f compartments that allow for differentiation between a
nd radial impellers.

The impellers used (RDT6 and A315) exhibit three
erent flow patterns that influence the orientation of the
ulation flow rates in the CM model. RDT6 exhibits a ra
ow pattern and, on the opposite, hydrofoil A315 has an a
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Fig. 2. “Basic plane” compartment network for a radial impeller (RDT6 on
the left) and an axial impeller (A315 on the right).

flow pattern. The “basic plane” models for each impeller are
presented inFig. 2.

These basic structures can be combined to model a multi-
staged vessel. In the case of a three-dimensional model, eight
basic plane structures are arranged in series for an agitation
stage, these planes being linked to each other by a tangential
flow rateqt (Fig. 3).

The first step in this study was the estimation of the param-
eterqe of the CM model. This allowed the determination of
the ratioqc/qe, which would then be used for the qualitative
analysis of the stochastic model. The translation from the CM
model to the stochastic context is illustrated inFig. 4. This
figure represents the global structure of the two models.

The ratioqc/qe coming from the CM model was used to
calculate the probabilities of shifting from one state to another
in the stochastic model. These probabilities were collected in
the transition matrixT. An example of a transition matrix
valid for a RDT6 system is given inFig. 5.

The ratioqc/qeonly has an impact on the shape of the tracer
curves and governs only the qualitative aspect of the results.
The quantitative aspect is taken into account by fixing the time
required to achieve a transition when running a simulation

Fig. 3. Arrangement scheme of “basic plane” structures to give a three-
dimensional compartment model.

with the stochastic model. This aspect will be analysed in
detail in Section3.

2.4. Parameter estimation procedure

For the two-dimensional compartment model, there are
two adjustable parameters:qe andqc. The circulation flow
rateqc was calculated by the use of the following equation
coming from dimensional analysis[3]:

qc = Nqc · N · d3

nloop
(4)

with nloop being the number of circulation loops implemented
by the model (nloop = 2 for the RDT6 andnloop = 1 for the
A315 impeller).Nqc is a dimensionless circulation number
that depends only on the impeller geometry in the turbulent
flow regime (Nqc = 1.51 for RDT6;Nqc = 1.3 for A315).

The turbulence flow rateqe was estimated by sensitivity
analysis. For a calculated value ofqc, the value ofqewas mod-
ulated to match the measured mixing time. The maximum
and the minimum values ofqe matching with the experimen-
tal mixing time were determined, the mean corresponding to
the used value ofqe in the simulations.

For the three-dimensional versions (Fig. 3), there was an
additional parameter to determine: the tangential flow rateqt.
T the
f

the
fl n-
s (
a
t

he determination of this parameter will be discussed in
ollowing sections.

After parameter determination of the CM model, all
ow ratesqc, qe andqt were collected to calculate the tra
ition matrixT of the corresponding stochastic modelsqc
ndqe for the two-dimensional versions;qc, qe andqt for the

hree-dimensional versions).
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Fig. 4. Comparison of the compartment model and stochastic approach.

Fig. 5. Example of transition matrix corresponding to the stochastic model
presented inFig. 4(right-hand side).

3. Results and discussion

3.1. Two-dimensional mixing time experiments

As previously discussed, the compartment model has two
adjustable parameters. The circulation flow rateqc was cal-
culated with the dimensional equation(4). The turbulent flow
rate was estimated by the procedure outlined in Section2. All
the results concerning these two parameters are presented in
Table 1.

Fig. 6 shows a comparison between experimental results
and a compartment model simulation for the mixing of tracer
pulse poured at the top of the vessel.

Adjustable parameters were calculated according to the
method discussed in Section2. The mixing times given by the

model matched the experimental ones exactly, but the shape
of tracer curves recorded by the probes at different locations
in a vertical plane of the vessel did not exactly match with
the simulation results. Nevertheless, simulated tracer curves
presented the same tendencies as the real ones (e.g., the tracer
curves recorded near the pulse location exhibited a strong
peak, which was not observed for the lower locations in the
vessel).

There are two principal factors affecting the quality of
the simulation. First, the number of compartments consid-
ered. If the number increases, the resolution of the model
will be higher and tracer curves may be more differentiated.
A high resolution can be obtained with models containing
a large number of compartments with several parallel cir-
culation loops. Such models are called network-of-zones.

Table 1
Estimation of the adjustable parameters of the compartment model for each
impeller system investigated

Impeller(s) N (min−1) Calculatedqc (m3/s) Estimated
qe (m3/s)

Lower stage Upper stage

RDT6 230 0.0028 – 0.0155
RDT6 270 0.0033 – 0.0205
RDT6 360 0.0045 – 0.0295
RDT6 450 0.0056 – 0.029
R
R
R
R
R
R
R
R

DT6–RDT6 230 0.0028 0.0028 0.04
DT6–RDT6 270 0.0033 0.0033 0.0475
DT6–RDT6 360 0.0045 0.0045 0.0645
DT6–RDT6 450 0.0056 0.0056 0.0725
DT6–A315 230 0.0028 0.0049 0.084
DT6–A315 270 0.0033 0.0058 0.123
DT6–A315 360 0.0045 0.0078 0.122
DT6–A315 450 0.0056 0.0097 0.158
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Fig. 6. Comparison of experimental results and simulation results obtained
with an RDT6–RDT6 compartment model (simulated values correspond to
the continuous lines).

Secondly, the model is limited to two dimensions. Indeed,
a three-dimensional model takes into account the tangential
component of the mixing action. This aspect will be improved
upon in the next section with the inclusion of a tangential flow
rate.

At this level, the goal is to translate the CM structure from
a determinist to a probabilistic context. To achieve this, the
stochastic Markov chain theory was chosen, because its appli-
cability in mixing processes (to date, especially in the case
of particulate mixing processes) has been previously proved
[13–15,17,19–22].

The first step is to take the same interconnected compart-
ments network used in the CM. For each compartment (called
a state, in the stochastic context), the probabilities of shifting
to an adjacent compartment (state) or of staying within the
initial compartment (state) were calculated. The flow rates
were then translated into probabilities of shifting from one
state to another, these probabilities depending on the flow
structure (radial or axial) and the ratio of circulating flow on
turbulence flow. All the probabilities were collected to con-

struct a transition matrix (Fig. 5), which governs the evolution
of the system from a stateSi(t) to a stateSi(t +�t) during a
transition time�t. The time taken to achieve a transition is
not explicitly given by the model. This important aspect will
be studied further in this section.

When having the stochastic model structure derived from
CM, the adjustable parameters of the new model must be
identified and the estimation method must be elaborated.

The first parameter to estimate is the ratio of the circula-
tion rate on the turbulence rate. This parameter only has an
impact on the qualitative results (on the shape of the tracer
curves). Theqc/qe ratio was calculated for each structure
(RDT6, RDT6–RDT6 and RDT6–A315) (Table 2).

On observing the results, it can be seen that theqc/qe ratio
is lower when the mixing system comprises an axial flow
impeller. These results seem to be in discordance with the
general literature covering mixing processes, which recog-
nises axial impellers as high circulation and low turbulence
inducing impellers. But the comparison of stirring systems
must be performed when operating at the same volumetric
power. In our case, the comparison was performed at the
same stirrer speed and it was thus normal to obtain a lower
value ofqc when operating with an axial flow impeller.

The second parameter to estimate is the effective duration
of a transition�t. This parameter is very important, since it
governs the quantitative result of the simulation and thus the
m
b ry
b par-
t er
T ula-
t ated
v first
t con-
s itions
i ry low
a
F tem
e rs.
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Table 2
Calculation of parameters necessary for the shift from a CM to a stochastic m

Impeller(s) N (min−1) qc/qe k )

RDT6 230 0.18 2
RDT6 270 0.16 7

8
72
47
1
88
86
59
19
95
RDT6 360 0.15
RDT6 450 0.19
RDT6–RDT6 230 0.07
RDT6–RDT6 270 0.07
RDT6–RDT6 360 0.07
RDT6–RDT6 450 0.07
RDT6–A315 230 0.04
RDT6–A315 270 0.03
RDT6–A315 360 0.05
RDT6–A315 450 0.04
ixing time value. If we look at a simulation (Fig. 7), it can
e seen that a given numbern of transitions are necessa
efore all the states of the models are visited by tracer

icles. It thus seems interesting to determine this numbn.
his can be easily done by observing the course of a sim

ion. When running a simulation with a single-staged agit
essel, five transitions are required before observing the
racer molecules on the lower part of the vessel. When
idering a two-staged stirred vessel, the number of trans
ncreases to 8 (the concentrations in the last states are ve
nd cannot be correctly viewed inFig. 7). We can see from
ig. 7 that the tracer evolution for the RDT6–A315 sys
xhibits oscillations that are typical of axial flow impelle

It is important to observe that this numbern does no
epend on the operating conditions, but only on the m

odel (two-dimensional case)

tm85% (s) �t (s) tc (s

32 5 0.15 1.7
32 4 0.12 1.4
32 3 0.09 1.1
32 3 0.09 0.8

154 14 0.09 1.
154 12 0.07 1.
154 9 0.05 1.
154 8 0.05 0.
133 7 0.05 1.
133 5 0.04 1.
133 5 0.03 1.
133 4 0.026 0.
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Fig. 7. Repartition of tracer concentrations through the different states of the stochastic model during a simulation (consisting of a series of transitions from
state to state). Three impeller systems are presented: (A) RDT6, (B) RDT6–RDT6 and (C) RDT6–A315. The corresponding state number can be found for the
RDT6 system inFig. 4.

structure and the number of states. Thus, for a given geome-
try and states network,n will be constant for every operating
condition. This numbern will be used further.

The time interval�t of the stochastic model was deter-
mined from experimental data by using the following equa-
tion:

�t = tm

k
(5)

Results of this analysis are presented inTable 2.
To give some physical significance to our model,�t must

be linked to a characteristic time of the mixing process that
can be easily calculated by the operator. We chose here the
circulation time, which is known to have a strong physical
signification for the mixing process. Indeed,Fig. 8 shows
that, when increasing the mixing performances and thus when
decreasing the circulation time, the parameter�t drops down
to a limiting value, which can be assimilated into the maxi- Fig. 8. Evolution of�t in function of circulation time.
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Fig. 9. Evolution of the correlation factorc involved in Eq.(6) with stirrer
speeds for different mixing systems.

mum homogenisation capability of the system. (Looking at
Fig. 2, it can be seen that the mixing time values are very low
for these operating conditions.) These observations suggest
a strong correlation between circulation time and�t.

In order to extract a correlation from these data, the fol-
lowing equation was considered:

�t = tc

n · c
(6)

with c being a correlating factor betweentc and �t. The
parametern corresponds to the number of transitions before
all the states (corresponding in practice to the flow regions)
are visited by tracer particles. This number of transitions is
indeed linked in the physical sense to the circulation time, the
circulation process assuming transport of particles through-
out the whole volume of the stirred vessel. InFig. 9, it appears
that c is constant for a given impeller geometry and vessel
size. Indeed,�t must intuitively increase with scale-up and
such behaviour can be denoted when comparing the RDT6
and RDT6–RDT6 systems.

Mean values ofc for each stirrer system are compiled in
Table 3.

At this stage of the study, it appeared that two parameters
needed to be determined in order to run stochastic simulations
in the case of mixing in a stirred vessel. The first parameter
was the ratioqc/qe, which does not vary significantly for
a s an
i cond
w eter.

T
M

I

R
R
R

It has been proven that this parameter can be linked to the
circulation time by a simple correlation (Eq.(6)).

In the next section, knowledge gained from the two-
dimensional model will be extended to a three-dimensional
model.

3.2. Three-dimensional mixing time experiments

Two-dimensional results obtained in the previous sec-
tion can be used to quantify the ratio of circulating flow on
turbulence-induced flow in each plane of the 3D-version of
the model. But in the 3D-model, a third kind of flow, named
tangential flow, is necessary to make the connexion between
adjacent planes. Tangential flow is responsible for the dis-
persal of tracer across the different planes of the vessel. Its
determination can be made by matching simulations with
experimental results. However, we showed, by using a sen-
sitivity analysis, that aqe/qt ratio equal to one leads to better
results. Indeed, we also modelled tangential flow by a back-
mixing flow. It is thus normal for tangential flows to have
values equal to those of turbulence flows, because of the anal-
ogy between the two dispersive mechanisms.

Translating the model into a 3D version leads to the mod-
ification of some parameters previously defined for the two-
dimensional model. The increase in the number of states in
t
e 8,
a
T

ed to
d f
t
e

r
i ed.

v ues
o

t n

T
C hree-
d

)

2

7
7
54
47
41
34
41
34
34
27
given stochastic model structure and which only ha
mpact on the qualitative aspect of the simulation. The se
as the time interval, which is the most important param

able 3
ean values ofc (see Eq.(6))

mpeller(s) c qc/qe

DT6 2.28 0.17
DT6–RDT6 2.49 0.07
DT6–A315 4.78 0.04
he model is traduced by an increase of then andk param-
ters. Indeed, the value ofn for a single-staged vessel is
nd 12 for a two-staged vessel. Values ofk can be found in
able 4.

Concerning this table, the same methodology was us
etermine the time interval�t of a simulation in function o

he mixing performance of the system (see Eq.(6)previously
laborated for the 2D models).

Fig. 10presents the evolution of the correlation factoc
n function of stirrer speed for each impeller system test

As previously noted for the 2D case, values ofc do not
ary significantly for a given impeller system. Mean val
f c are compiled inTable 5.

Eq. (6) and the values ofc reported inTable 5were used
o perform several simulations.Fig. 11shows a compariso

able 4
alculation of the parameters involved in stochastic models (t
imensional case)

Impeller(s) N (min−1) qc/qe qt/qe k tm85% (s) �t (s

RDT6 230 0.18 1 80 5 0.06
RDT6 270 0.16 1 80 4 0.05
RDT6 360 0.15 1 80 3 0.03
RDT6 450 0.19 1 80 3 0.03
RDT6–RDT6 230 0.07 1 292 16 0.0
RDT6–RDT6 270 0.07 1 292 14 0.0
RDT6–RDT6 360 0.07 1 292 12 0.0
RDT6–RDT6 450 0.07 1 292 10 0.0
RDT6–A315 230 0.04 1 290 12 0.0
RDT6–A315 270 0.03 1 290 10 0.0
RDT6–A315 360 0.05 1 290 10 0.0
RDT6–A315 450 0.04 1 290 8 0.0
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Fig. 10. Evolution of the correlation factorc involved in Eq.(6) with stirrer
speed for different mixing systems (three-dimensional system).

Table 5
Mean values ofc for a 3D-model (see Eq.(6))

Impeller(s) c

RDT6 3.42
RDT6–RDT6 2.38
RDT6–A315 3.33

of these simulations with experimental results. It can be seen
that the proposed parameter evaluation methodology led to
acceptable results.

3.3. Residence time distribution experiments

In order to perform RTD simulations, the 3D-model must
be adapted by adding an additional state, named the absorb-
ing state. This state is responsible of the absorption of tracer
molecules and represents the lower zone of the vessel, includ-
ing the liquid evacuation hole. The transition matrix (Fig. 5)
must be adapted to contain the absorbing state and has the
aspect shown inFig. 12 [19].

Fig. 11. Comparison between experimental (dot) and simu
lated results (line) with three-dimensional stochastic models.
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Fig. 12. Transition matrix containing an absorbing state used to perform
RTD simulations.

In this matrix,Tbatch is the transition matrix previously
presented inFig. 5; B is a column vector containing zero ele-
ments and a single element containingqexit; 0 is a line vector
containing zero elements and 1 is a unit element responsible
for the absorbing process.

In this case, an additional parameter expressing the liquid
flow rate leaving the system must be determined. This flow is
experimentally known and its determination does not cause
any difficulties.

At this stage, it is thus possible to perform simulations by
entering the previously determined parameters of the model.
In this section, we will perform simulations and compare the
results with experimental data. Examples of the quality of the
simulations can be viewed inFig. 13.

These simulations were performed by using parameters
(qc, qe, qt and�t) coming from three-dimensional mixing
experiments (seeTables 4 and 5). The simulations improved
the validity of these parameters for the mixing systems con-
sidered.

3.4. Stochastic simulation of particle circulation in a
stirred vessel

Another interesting property of the stochastic model is
that the transition matrixT can be directly used to perform
s
c and
t dom
n le in

Fig. 14. Stochastic simulation of a particle circulation inside a stirred vessel.
The arrangement of states corresponds to the axial “basic plane” defined in
Fig. 3.

displacement inside the stirred vessel. In a bioprocess con-
text, it is very important to know the passage frequency of the
micro-organisms in some crucial flow regions of the biore-
actor (for example, the substrate addition point in the case
of a fed-batch culture, which can cause a stress due to the
high concentration levels). In the case of a circulation process
simulation, only the axial planes of the vessel are important.
We can thus limit our observations by using only one of the
basic planes of the three-dimensional model defined inFig. 3.
An example of particle travel from state to state is given in
Fig. 14.

These results can be exploited to calculate the passage fre-
quency of a particle inside a given state and, in this way, the
circulation time in relation with this state. When simulation
involves a lot of transitions, circulation time distribution can
be established for a given state or a given set of states. Such
an example is given inFig. 14for 200,000 transitions, which

ted RT .
ingle particle circulation simulations. Indeed, theT matrix
ontains all the transition probabilities from state to state
hese probabilities can be used in conjunction with a ran
umber generator to provide the path taken by a partic

Fig. 13. Comparison between experimental (dot) and simula
 D results (line). Right: RDT6–A315 system; left: RDT6–RDT6 system
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Fig. 15. Circulation time distribution related to a given state of the stochastic
model (circulation timetc is not expressed here in seconds but in number of
transitions).

correspond more or less to 2300 circulations through a par-
ticular state. The state chosen here corresponds to the flow
region located at the top of the vessel, which, in case of a
fed-batch bioprocess, is subject to substrate pulse addition.
This in turn can affect cellular metabolism. An important fact
is that the circulation time distribution (CTD), represented in
Fig. 15, exhibits a log-normal shape, as described in the lit-
erature[16].

The maximum of probability corresponds to three transi-
tions before returning to the specified state and is in accor-
dance with the basic plane structure of the model, which
involves four states per circulation loop. This phenomenon
can also be viewed inFig. 14, which highlights the presence
of two circulation loops in the axial plane of the vessel. The
variance comes from the fact that the particle can bypass
the circulation loop constituted by a set of four states. The
variance can be increased by considering several concentric
circulation loops, but this requires a modification of the model
structure. This important fact, as well as the extensive devel-
opment of the circulation aspect, emerges from the objectives
of this publication and would need a separate study.

4. Conclusion

ilitat-
i ls. It
i part-
m flow
r r sys-
t ition
m time
i time
s iate
a ed to

make the connexion between a simulation step and a real time
interval (�t). The correlation (Eq.(6)) contains an adjustable
parameter, which depends only on the impeller geometry, in
the range of operating conditions tested. Corresponding val-
ues ofc can be found inTable 3for two-dimensional models
and inTable 5for three-dimensional ones.

The stochastic model can be used for model mixing
behaviour of different impeller systems in stirred vessels,
resolution being equivalent with that obtained with classi-
cal CM. Indeed, simulation performances were similar for
each kind of model investigated in this study. This equiva-
lency allows the application of the stochastic model to the
study of mixing in fluid systems. This approach is inter-
esting because of the exclusive properties of the stochastic
model (not found in the classical CM), which can be used to
investigate special mixing behaviour in the process industry.
The aim of our study was to combine a structured hydrody-
namic model (such as CM or more recently the stochastic
model) with microbial kinetics. In this area, the exposure
of micro-organisms to gradients can be investigated by per-
forming particle-tracking simulations. These simulations can
be simply performed by using the transition matrix of the
model, as shown in this study. A second advantage of the
stochastic model in this area comes from the discrete evo-
lution of the system during a simulation run. Indeed, this
characteristic of the stochastic model allows the calculation
o
e dels
i such
a hich
r pace
[

R

.M.
nd
em.

hter,
d
E 78

ev,
nsfer
492.

uy-
tiple

ulti-
6.
to

ruc-
994)

ale-
hem.
A methodology has been presented here aimed at fac
ng the calculation of the parameters of stochastic mode
nvolves the use of estimated flow rates coming from com

ent mixing model analysis. The ratio between these
ates can be assumed to be constant for a given impelle
em, which greatly facilitates the elaboration of the trans
atrix. A second important parameter to determine is the

nterval�t, necessary to achieve a simulation step. This
tep is not explicitly given by the model but, after appropr
nalysis, it appears that a simple correlation could be us
f a given state by using Eq.(3) (Si = Ti · S0). This prop-
rty can be exploited when dealing with complex mo

nvolving reactor hydrodynamics and reacting species (
s micro-organisms in the presence of a nutrient), w
equire a large amount of computational time and s
23].
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